Detection of Ammonia-Oxidizing Bacteria (AOB) Using a Porous Silicon Optical Biosensor Based on a Multilayered Double Bragg Mirror Structure
نویسندگان
چکیده
We successfully demonstrate a porous silicon (PS) double Bragg mirror by electrochemical etching at room temperature as a deoxyribonucleic acid (DNA) label-free biosensor for detecting ammonia-oxidizing bacteria (AOB). Compared to various other one-dimension photonic crystal configurations of PS, the double Bragg mirror structure is quite easy to prepare and exhibits interesting optical properties. The width of high reflectivity stop band of the PS double Bragg mirror is about 761 nm with a sharp and deep resonance peak at 1328 nm in the reflectance spectrum, which gives a high sensitivity and distinguishability for sensing performance. The detection sensitivity of such a double Bragg mirror structure is illustrated through the investigation of AOB DNA hybridization in the PS pores. The redshifts of the reflectance spectra show a good linear relationship with both complete complementary and partial complementary DNA. The lowest detection limit for complete complementary DNA is 27.1 nM and the detection limit of the biosensor for partial complementary DNA is 35.0 nM, which provides the feasibility and effectiveness for the detection of AOB in a real environment. The PS double Bragg mirror structure is attractive for widespread biosensing applications and provides great potential for the development of optical applications.
منابع مشابه
A Potentiometric Flow Biosensor Based on Ammonia-Oxidizing Bacteria for the Detection of Toxicity in Water
A flow biosensor for the detection of toxicity in water using the ammonia-oxidizing bacterium (AOB) Nitrosomonas europaea as a bioreceptor and a polymeric membrane ammonium-selective electrode as a transducer is described. The system is based on the inhibition effects of toxicants on the activity of AOB, which can be evaluated by measuring the ammonium consumption rates with the ammonium-select...
متن کاملPorous silicon Bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules
A porous silicon (PSi) Bloch surface wave (BSW) and Bloch sub-surface wave (BSSW) composite biosensor is designed and used for the size-selective detection of both small and large molecules. The BSW/BSSW structure consists of a periodic stack of high and low refractive index PSi layers and a reduced optical thickness surface layer that gives rise to a BSW with an evanescent tail that extends ab...
متن کاملOptical pulse compression based on nonlinear silicon waveguides and chirped Bragg gratings
Due to the growing demand for higher bandwidth, employing optical devices instead of electronic devices in data transmission systems has attracted much attention in recent years. Optical switches, modulators and wavelength converters are a few examples of the required optical devices. CMOS compatible fabrication of these devices, leads to much more growing of this technology. Optical pulse comp...
متن کاملOptical properties of multilayered porous silicon
We present a short review of some optical devices based on multilayered porous silicon, which can be easily obtained by varying the formation current during the etching process. These include Bragg reflectors and Fabry–Pérot microcavities, which can be adjusted from the visible to the near infrared. The interface roughness, tragic in the case of multilayers, is studied. It can be drastically re...
متن کاملCommunities of Ammonia-oxidizing Archaea and Bacteria in Enriched Nitrifying Activated Sludge
In this study, communities of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in nitrifying activated sludge (NAS) prepared by enriching sludge from a municipal wastewater treatment plant in three continuous-flow reactors receiving an inorganic medium containing different ammonium concentrations of 2, 10, and 30 mM NH4-N (NAS2, NAS10, and NAS30, respectively) were investiga...
متن کامل